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ABSTRACT

In this thesis, we investigate the examination of a manufacturer's in-house

quality program as an alternative to acceptance sampling. The manufacturing

process addressed is one which consists of a production sectinn. ,nble n,

producing items at one of two levels of fraction nonconforming, and a quality

control section which consists of a single p-chart. The quality levels that result

from this manufacturing process are represented using a Markov chain. A method

of estimating the fraction of nonconforming items produced by the process is

developed. Confidence intervals on this fraction nonconforming are obtained and

these values considered for use in an alternative acceptance criteria for lots. When

the upper confidence limit on the lot fraction nonconforming does not exceed the

Acceptable Quality Level, there is considerable confidence that lots randomly

selected from the manufacturing process will be acceptable without acceptance

sampling.
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I. INTRODUCTION

In March 1988, the Secretary of Defense issued a memorandum giving priority

:o the Department of Defense Total Quality Management (TQM) effort. This effort

was to focus on "quality as the vehicle for achieving higher levels of performance"

with the ultimate goal being a "quality-equipped, quality-supported soldier, sailor,

airman, and Marine." [Ref. 1]

Risin- costs, decreasing budgets and urgency cf product delivery has caused the

Department of Defense to look closely at its quality assurance methodology. Long-

tei m direction stated in the Department of Defense Total Quality Management

Master Plan [Ref. 1] calls for

establishing meaningful contract terms and conditions...rewarding/reinforcing
contractor quality/reliability/producibility...emphasizing quality in award-fee
incentives...instituting a Department of Defense contractor quality excellence
award...and emphasizing contractor's control and monitoring of subcontractors.

Determining and assuring the quality of items acquired from contractors and

their vendors is an increasingly expensive endeavor. In light of this, less costly

alternatives tc acceptance sampling are being sought. In June 1990, Hammons

[Ref. 21, seeking one such alternative, developed a Markov chain to estimate the

performance of a manufacturing process. It was shown that, in some cases,

acceptance sampling may be unnecessary if it can be verified that the vendor's quality

assurance program is satisfactory. Satisfactory, in this context, means that the
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production process is monitored and control is maintained through a quality program

that supplies sufficient numerical evidence to support an estimate of product quality.

Not all manufacturing processes require extensive scrutiny when quality is the

concern. Some processes operate in a fashion which produces high quality products

with such regularity that it may not be worth the time and resources needed to assure

item quality. When items have low monetary value, or minimal operational impact,

the expenditure needed to verify the producer's quality program may outweigh the

cost of accepting a low quality item. The aforementioned concerns are reasons to

accept some items without quality assurance. Field evaluation for these items may

be the most cost effective course of action, reserving as open the option to reinstate

quality assurance practices if item performance degrades to an unacceptable level.

The use of Markov chain methods to analyze quality control techniques that was

found in current literature concentrates on modeling acceptance sampling plans

themsehes, not control of the overall manufacturing process. Brugger [Ref. 3] while

using a Markov chain to analyze the inspection sampling plans given in ANSI/ASQC

Z1.4 reports that

While this paper dealt with sampling plans, the methods described could of
course be used in other suitable applications.

Throughout this thesis we will explore an alternative to acceptance sampling by

using a Markov chain analysis to verify a producer's quality program. We will

examine a quality control practice typical of many manufacturing processes. This

practice could represent a small quality program or a portion of a larger quality
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program in a manufacturing process. Production will be classified as either in control,

meaning the fraction of items produced not conforming to the quality characteristic

specifications is acceptable; or out of control, meaning the fraction of items

nonconforming is too great. Our approach will be to determine the proportion of

time the process is in control and the proportion of time the process is out of control

through the use of a Markov chain, and calculate the fraction of items produced that

do not meet the required quality specifications. In some cases, rather than using the

current method of acceptance sampling, this calculated fraction of nonconforming

items may provide information for alternative acceptance criteria.

A. CURRENT PROCEDURES

A longstanding method for quality assurance practiced by the Department of

Defense is acceptance sampling. The Department of Defense primarily uses MIL-

STD 105D as its directive for acceptance sampling when inspection is by attributes.

(Acceptance sampling when an item is judged nonconforming by variables is directed

by IMIL-STD 4i4.) Thtse directive estavlish the samplrip nkin "sed w'en accepting

or rejecting lots from a vendor.

In MIL-STD 105D, an Acceptable Quality Level or AQL is used to determine

the sampling plan. This level is the "poorest level of quality...that the consumer

would consider acceptable" in a lot, and is usually given in lot proportion

nonconforming
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[Ref. 4:p. 170]. The Acceptable Quality Level allows for a certain percentage of

nonconforming items be present in a lot. Acceptance sampling is used to determine

if a lot meets, or does better than this Acceptable Quality Level.

Single-sample acceptance plans are easily understood and implemented. A

sample of predetermined size is identified in a lot. Each item in the sample is

inspected for a certain quality characteristic. This characteristic may be a physical

measurement such as weight or size: it may be a time-oriented calculation such as

reliability or availability: or it may be a sensory-related assessment such as comfort

or taste. If the number of items found not conforming exceeds a predetermined

number, set by the sampling plan. then the lot is rejected. Conversely, the lot is

accepted if the number of nonconforming items does not exceed the predetermined

number.

The purpose of sampling in this manner is to determine tf'_c fate of a particular

lot. It is not intended to estimate the lot quality. If several lots of identical quality

are inspected, sampling in the above manner may reject some and accept others.

Acceptance sampling prujides the cnsurner with a n!,mber of advantages, the

first of which is savings. Sampling is generally less expensive than a policy of 100%

inspection or screening, primarily because there is less inspecting. (Clearly, if

inspection is destructive, 100% inspection is not practical.) A second advantage of

sampling is the message sent to the vendor. Following a screening inspection, only

the nonconforming items would be returned to the vendor. If sampling is used, an
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entire lot is returned in place of just the nonconforming items. This "...provides a

stronger motivation to the vendor for quality improvements" [Ref. 5:p. 353].

Of course, acceptnce sampling does have its disadvantages. Foremost is the

fact that bad lots may be accepted and good lots may be rejected. Although sampling

is usually better than screening, it is still costly in both time and manpower. Records

must be maintained justifying acceptance or rejection which add to the consumer's

administrative burden and cost. In an effort to reduce costs, the Department of

Defense is seeking alternatives that offer similar protection to that enjoyed under the

current methods of acceptance sampling.

B. TIlS THESIS

This thesis will pursue. as an alternative to acceptance sampling. examination

of the in-house quality program a vendor has established to maintain quality. The

numcricail evidence provided by a satisfactory in-house quality program can provide

information consistent with acceptance sampling. In other words, if a manufacturer

is ensuring product quality through In-house programs, and this can be verified in the

form of a quality estimate. the Department of Defense could, in some instances,

forgo acceptance sampling in favor of the vendor's quality program.

Our effort begins in Chapter II where the concept of Statistical Process Control

(SPC) and the place it takes in a producer's quality program is discussed. Control

chart theory is introduced and supported by an example.
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Chapter III presents a simple manufacturing process example that has its

production process monitored through the use of Statistical Process Control. A three

state Markov chain is used to mode! the impact of the manufacturing process' quality

control program. The proportion of time that process production is in control and

out of control is found and the fraction nonconforming produced is calculated.

Confidence intei,'als are obtained for a lot fraction nonconforming. An alternative

to that of acceptance sampling is addressed. The concept is then extended to explore

a mo.e complex manufacturing process. The employment of the Markov model is

introduced along with the particular numerical evidence that must be obtained from

the manufacturing process which is necessary to complete the calculations.

Chapter IV shows an application of the model through a solved numerical

example. Explored here are some alternatives to acceptance sampling when the

manufacturing process presented in Chapter III is representative of the process under

consideration. The Markov model sensitivity is addressed through further numerical

example.

In Chapter V, we brieflv summarize our findings. Recommendations are made

and suggestions for further study in this area are presented.
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II. STATISTICAL PROCESS CONTROL

Statistical Process Control is a methodology which may be used as part of a

vendor's quality control program. Quality programs using this methodology "let the

process do the talking" while statistical "listening tools" monitor product quality

[Ref. 6:p. 10]. An understanding of Statistical Process Control is necessary if we zre

to judge the vendor's quality program instead of using of acceptance testing. One of

the primary tools used to maintain control of a process, the control chart, is

introduced in this chapter.

A. THE CONTROL CHART

Manufactu ing processes typically yield nonconforming items, for one or more

reasons, in a random manner. Although naturally occurring production variations

yielding nonconforming item must be accepted, many factors which cause

nonconforming -tems can b, identified and corrected. Untrained production

personnel, poor input material, or production machinery slipping out of calibration

are among these identifiable causes. A useful listening tool for identifying if a

correctable factor might be present is the control chart.

First introduced in the mid 1920's by Walter A. Shewhart, control charts apply

statistical hypothesis testing to monitor a production process. A production process

is said to be in control when the level of nonconforming items produced is due only
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to natural production variations. Infrequently, the process will begin to produce a

differing level of nonconforming items. If identifiable causes are present, and the

level of none informing items is other thzn normal, the process is said to be operating

out of control. Control cnarts are used to reveal if a process has shifted from being

in control to being out of control.

The control chart is a progressive plot monitoring quality, and is employed at

a specific location in the manufacturing process. The x-axis represents the ordering

of samples taken from the production process. The y-axis represents some aspect of

quality as measured by the sample, such as the sample's fracti,)n of nonconforming

items. (A fraction nonconforming chart is known as a p-chart.) A center line on the

chart represents the average value of the quality characteristic when the process is

in control. Contr,; limits, one high and one low, depict the allowed control chart

tolerance. Generally the control limits are set three standard deviations of the

proccss average above and below the center line (process average).

Control charts are easily employed during production. Samples, taken at

predetermined intervals of length T, are inspected and the quality measure is

recorded. The sampling interval length may be time, such as every hour, or it could

be a previously determined number of items produced, such as every 10,000. The

process is listened to by plotting the sample results on the control chart. If the

sample results fall outside the control limits, or a non-random pattern of sample

results is observed, the process is declared out of control. When an out of control
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determination is made, the cause, or causes for the new level of nonconforming items

are sought and corrected.

The probabilistic results of a control chart can be likened to that of a hypothesis

test, with the null hypothesis being that the process is in control. When a sample

result falls outside the control limits we reject the hypothesis that the process is in

control. If a sample result falls inside the control limits, we can only say that we fail

to reject the hypothesis. As in hypothesis testing, the possibility of making a type II

error exists.

Control charts have associated operating characteristic curves (OC curves). The

probability of concluding that the process is in control is given as a function of a

process parameter, such as proportion nonconforming. Interpretation of the control

chart OC curve is much the same as that of a sampling plan OC curve. The

probability of the chart yielding a decision of in control, when the process is not

operating at the process average (central line), has a similar interpretation to that of

accepting a bad lot. This is the risk of making a type II error or "...the chance of not

catching a shift in the process average on the first sample..." (in fact, any sample)

"...taken after the shift has occurred" [Ref. 4:p. 426].

B. A CONTROL CHART EXAMPLE

It is useful to give an example of a control chart. The type of control chart we

will use for our example is a p-chart. Suppose that the fraction of nonconforming

items produced when the process is in control, p,, is 0.05. This serves as our center
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line. If samples of size n = 50 are used, then when the process is in control, the

standard deviation of the sample's fraction nonconforming is

(p1 )(1 -Pi),P = n = 0.03082

The control limits for our p-chart are the standard three-sigma limits and thus the

upper control limit is 0.1425. Figure 1 shows this particular p-chart with points

plotted for 13 samples.

Out of control

0.15 Upper Control Umh

0.13

0.11

0
Z 0.09
C

0.07

'0 0.05
E

~"0.03

0.01

1 2 3 4 5 6 7 8 9 10 11 12 13

Sample number in order taken

Figure 1 A p-chart with a single three-sigma upper control limit.

Random samples of 50 items, taken from the items produced in the previous

sampling inteival, are inspected for the desired quality characteristic. The fraction

nonconforming from each sample is plotted against the time-ordered sample number.
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The first two samples remained below the upper control limit and production is

determined to be in control. The third sample plotted above the upper control limit

revealing the process to be out of control. Typically, a shift to out of control

production can be traced 1-'ck to a cause factor in the production process. In this

case, corrective action of some sort was taken and subsequent samples showed this

action to bring the process in control. Sampling continued every intervai .id the

determinations were made concerning the condition, in control or out of control, of

the production process.

This type of listening tool is a basic part of Statistical Process Control. In the

next chapter, we will examine a production process which uses Statistical Process

Control as part of its quality program. A method of process quality control

verification is explored which leads to calculations of alternative acceptance criteria.

We will take a stochastic approach.
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III. USING A MARKOV MODEL TO EXAMINE THE IMPACT OF A QUALITY
CONTROL PROGRAM

In this chapter, the impact of a quality control program on a simple

manufacturing process will be modeled as a Markov chain. Statistical Process

Control, in the form of a control chart, will be the statistical foundation of the quality

control program. Using this Markov model, we present a methodology one might use

to find, as satisfactory, representative quality control programs. (Satisfactory was

previously defined as meaning that the quality program supplies sufficient numerical

evidence to support an estimate of product quality.) Our goal will be to determine

the proportions of time the manufacturing process operates either in control, or out

of control, which will permit us to calculate an estimate of the fraction of

nonconforming items produced. In turn, we will use this estimate to form possible

alternative acceptance criteria to that of acceptance sampling. After modeling a

quality control program, we will expand this approach to encompass a more involved

manufacturing process.

A. A SIMPLE MANUFACTURING PROCESS EXAMPLE

The manufacturing process we will consider consists of a set of production

stages, producing items at a constant rate, and a process quality control section,

responsible for implementing Statistical Process Control. In this process, the

production stages, located prior to the process quality control section, yield one of

12



two fractions of nonconforming items. When production is of acceptable quality, the

fraction of nonconforming items produced and arriving at the quality control section

will be p,, while when the process shifts to the second, unacceptable level, the fraction

of nonconforming items produced will be P2, The process quality control section will

consist of a single p-chart. Figure 2 shows a representation of this example

manufacturing process.

Process Production Section Proos3 Ouality

Control Section

p2 p2

Producton Produclion
Stage Stage I

., 
P

Sp1 p-chart

Figure 2 A manufacturing process composed of a Process Production
Section producing one of two fractions nonconforming (p, or P2), and a
Process Quality Control Section employing a p-chart.

The process quality control section, the p-chart, is used to determine when the

manufacturing process has shifted from in control to out of control. At the end of

each sampling interval of length r, a random sample of production items is drawn,
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and inspected for the desired quality characteristics. The results of the sampling

inspection ar. recorded on the p-chart, and a determination is made regarding

whether the process is in control or out of control.

B. A MARKOV REPRESENTATION OF A MANUFACTURING PROCESS
QUALITY CONTROL SECTION

A Markov chain exhibits the property that the one-step transitions from a

Markov chain state to another depends only upon the current state and the one-step

transition probability to the next state. This independence from the past is known

as the Markov property. The quality levels resulting from a manufacturing process,

consisting of a process production set.on and a process quality control section (a p-

chart) can be represented using a Markov chain.

The Markov chain representation of the example manufacturing process

introduced earlier is closely related to the sampling interval " of the process quality

control section. Over the course of a sampling interval, the process production

section may or rnqy not have experienced a shift from p, to p2, and the p-chart

determination of the process quality control section (in control or out of control) may

or may not have correctly identified this shift. Combinations of these events form

three Markov chain states. The states for our Markov chain will be defined as

State I - The process starts the sampling interval yielding p,, and remains yielding
p, throughout the sampling interval,

State S - The process starts the sampling interval yielding p,, shifts to yielding P,
during the sampling interva!, and remains yielding p, for the :k::,h:dcr , :he
interval, and

14



State 0 - The process starts the sampling interval yielding p2, and remains yielding
p, throughout the sampling interval.

The level of nonconforming items produced by the process production section,

(p, or P2) and the p-chart determination of the process quality control section (in

control or out of control) can be seen in Figure 3 which shows how the state-to-state

Markov transitions might occur.

Markov
I S I S 0 S I S Chain

State

p2

pl

1 2 3 4 5 6 7 8 9 ...

Sampling Interval

Figure 3 The manufacturing process Markov chain plot. This plot shows the
relationship of the process level and the p-chart determination to the Markov
chain state.

In the first sampling interval, denoted by Markov chain state I, production

started at and remained at p,. The second sampling interval exhibits a production

level shift from p, to p,; thus the Markov chain state is denoted by S. In the sixth

sampling interval the process was in state 0, with production at a level of
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nonconforming equal to p, for the entire interval. This occurs because the p-chart

failed to correctly identify an out of control process in the previous, the fifth, interval.

Production will remain at a level equal to p2 until a correct p-chart determination is

made.

Transitions among the three Markov chain states I, S, and 0 result from two

probabilistic occurrences in the manufacturing process. The first is the p-chart

determination of the process production level, p, or p,. When we conclude the

process average fraction nonconforming is p,, given that production is at p2, a type

II error has occurred. We will define the probability of making this type II error as

Pa. The complimentary probability, 1-P., is the probability we conclude production

is at process average fraction nonconforming, p2, given that production is, in fact, at

that level. The second probabilistic occurrence, the probability that the production

level shifts from p, to p2, must be carefully defined to ensure the Markov property of

independence from the past is observed.

The manufacturing process shift can be viewed as a time to failure of the

process, an analogue of a machine in a maintenance model. We will consider

production at p, to be synonymous with that of a production process success, and

production at p, to be synonymous with that of a failure. The manufacturing process,

yielding a fraction of nonconforming items equal to p, may begin to yield a fraction

of nonconforming items equal to p, in a random amount of time. This process shift.

a failure of the process production section, may be due to any number of causes on

the production line. Perhaps a production unit slipped out of calibration and caused

16



the shift, or an employee, inattentive to his job, was the cause. The time elapsed

from when the successful process (yielding p,) fails (shifts and begins to yield P,), may

be exponentially distributed. This is not unlike a machine in a maintenance model.

We will not draw any further conclusions concerning this probability distribution.

However, we will invoke the memoryless property at times 7, 27, 37 ... . This

maintains the Markov property of independence of past states. The exponential

probability that the manufacturing process shifts during a sampling interval is

6 = 1 -e -1''

However, if we express the exponential shift rate parameter X, in units of shifts per

r, the resultant expression for 8 is independent of the sampling interval length and

can be expressed as

8 = 1- -u

The complimentary probability, 1-6, is the probability that no shift occurs.

Recall that our goal was to determine the proportion- of time the

manufacturing process operates either in control, or out of control and calculate an

estimate of the fraction of nonconforming items produced. Our approach is

straightforward. To estimate the manufacturing process fraction nonconforming p',

we will multiply the fraction nonconforming level the production process is operating

at by the proportion of time the process spends producing that particular level, and

sum over all states. The proportions of time the process operates in each state are

commonly referred to as the stationary probabilities. Stationary probabilities are

17



symbolically represented with the notation ,,, where the subscript denotes the state

of interest. This notation allows us to conveniently represent the equation for the

manufacturing process fraction nonconforming as

p, = E3rp 1  ; t = I/, S, O}
iE (

The state S holds particular interest in that it is the state during which two

differing levels of fraction nonconforming are produced, p, and p,. To complete the

calculation of pI, we need to know the fraction nonconforming level produced while

in this state. This fraction nonconforming, which we will refer to as p*, has a lower

bound of p, and an upper bound of p2 . Given that the production process shifts from

p, to p., o,"er the sampling interval (0, r], and that the time until the shift is

exponentially distributed with rate parameter X, we derive the expression

= 1 - (l+X.)e - *  (1)

X.(1 -e -u)

which is the expected value of the proportion of time spent in state S attributable to

the fraction nonconforming level of p,. The full derivation is given in Appendix A.

With this result, the relationship for p* is defined as

P *= Q PI + (1-Q)P 2  (2)

The process average p" for state S has an associated p-chart type I error

probability. This type I error occurs when we conclude the process average fraction

nonconforming is pl, given that production for the sampling interval is actually p*.

18



We will define the probability of making this error as P. The value for P.* can be

determined from the p-chart OC curve as a function of p'.

The two probabilistic occurrences in the manufacturing process over a sampling

interval: the p-chart determination when the process is at P2 or p°, and the probability

of a process shift, permit calculation of the one-step transition probabilities among

the Markov chain states I, S, and 0. These one-step transition probabilities can be

shown in the transition probability matrix,

NEXT STATE

I S 0

/ ( (1-6) 0
PRESENT S (1 - P.,')(1 -6) (1 - Pa.)8 Pa J
STATE(lP)l)

0 (1 - Pa) (1 -6) (1 -Pa)6 ma

This matrix reflects the previously explained state-to-state Markov transitions.

For example. a transition from state 0 to state S requires that the p-chart correctly

determine production to be at the p, level (l-P), and that during the next sampling

interval, a production process shift back to p, occurs (6). These transition

probabilities can also be shown in the form of the Markov chain transition diagram

as seen in Figure 4.
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(1-6)(1 -Pa*) 6

(1 -Pa*) (1 -8)

I S

(1-Pa)6 8

(1-P a)I (1 )P 
a*

Pa... Pr(conclude pi p2) 0
(1 -Pa) ... Pr (conclude p2)

Pa*... Pr (conclude pl Ip)

(-Pa ) ... Pr (o nud p ) 
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Figure 4 The probability transition diagram for the Markov chain states 1, S,
and 0. The transition probabilities are the probabilistic outcomes of a p-
chart's determination of a production process shift occurrence.

C. STATIONARY PROBABILITIES

The probability transition matrix,

NEXT STATE

IS 0

I (-5)8 0
PRESENT S (lP*)(15) (1 Pa*)b PSTATE (- 8 (-)(- 8 5P
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can be solved for the stationary probabilities by solving

'b=  ,Pj ; , I, s, 0)
I, jE4

with the restriction that

JEo

where the one-step transition probabilities P, , are taken from the probability

transition matrix [Ref. 7 :p. 152].

To symbolically find the stationary probabilities we substitute the one-step

transition probabilities into the above equations and solve

n =Lt1(1-6) + ns( 1 -P*)(1 -6) + no (1-Pa)(1 -8)

n s = TEj6 + n s(1 -P.*)b + n o(1 -P. )8

no = sm." + noP ,

and

nI + 7 s +  o =0 1

The resulting suitionary probabilities

= _P ) ( - ) (3)

1 - P. + 8 P."
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8(1-Pa) 
(4)

1 -P + 6Pa

and

It = , (5)
1 - P+ 6Pa"

represent the long run proportion of time each process state is experienced.

Most control charts will be designed so that the value of P. is small, probably

near 0.1, and certainly less than 0.5. Since the chance of a shift would be expected

to also be small, and again certainly less than 0.5, the steady state equations show

that the process will spend the greatest proportion of sampling intervals in control.

The proportion of sampling intervals spent out of control will be smaller than those

in which a shift occurs. In short, we should have 7r, > 7r, > 7r.

D. FRACTION NONCONFORMING CALCULATION

The stationary probabilities give us the necessary input to calculate the fraction

nonconforming. Specifically, production is operating at a process average fraction

nonconforming of p, (in state I) the proportion of time equal to r,. Likewise, the

process is operating at a process average fraction nonconforming of p2 (in state 0)

the proportion of time equal to 7r o and at process average fraction nonconforming

p* (in state S) the proportion of time equal to 7r s.
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Our approach, as described earlier, was to take the stationary probabilities,

multiply them by their respective process fraction of nonconforming items yielded,

and sum over all states. The resulting calculation,

P/ = + + 7 0 P2 , (6)

is the long run process fraction of nonconforming items yielded by the manufacturing

process.

Addressing the stationary probabilities in a somewhat different manner, an

equivalent interpretation of ir, is the probability that the process is operating at p1 .

We will refer to this probability hereafter as Pr(p,). The probability that the

production process is operating at P2 is r o, and will be referred to as Pr(p.).

Likewise, 7r s will be referred to as Pr(p*). Therefore, an equivalent representation

of Equation (4) would be

p' = Pr(p1) pA + Pr(p) p" + Pr(p 2) P2  (7)

If control of the manufacturing process was maintained as described by the

model, and lots are formed from a random sampling of the production items, then

the expected number of nonconforming items in a lot of size N is determined to be

E[# nonconforming items in a lot] = Ej#ot = N p1

and the variance of the number of nonconforming items in a lot is
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Var[# nonconforming items in a lot] = C2 = Np' (1 - p')

A one-sided 95% upper confidence limit on the fraction of nonconforming items

in a lot, p,.,, is found to be

Pr plot < pI + 1.645 ( / 0.95(8

This confidence limit is based on the normal approximation to the binomial

distribution. Reasonable results are obtained when N and p, are large (N > 30 and

p ' > 0.10). (Another rule of thumb for using this approximation is that N(p ') and

N(1-p,) be greater than or equal to 5.) When p, is small (p' < 0.01) and N is still

large, a poisson approximation to the binomial distribution should be made. The

confidence interval for small values of N in combination with a range of p, between

0.01 and 0.50 can be obtained in the National Bureau of Standards Tables.

[Ref. 4:pp. 572-3]

A one-sided upper confidence limit on the fraction of nonconforming items in

a lot is useful because it can be stated with a certain amount of confidence that the

number of nonconforming items in the lot is expected to be no greater than that

limit. When this value of fraction nonconforming is compared to the Acceptable

Quality Level, valuable information is gained when considering alternate acceptance

criteria.
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E. VERIFICATION OF THE PRODUCER'S QUALITY PROGRAM

If alternative acceptance criteria are to be considered, and a fair comparison

made to acceptance sampling, then we must establish a common ground for measure.

We will consider using the Acceptable Quality Level as this measure. We can recall

that when using acceptance sampling, the Acceptable Quality Level or AQL was the

standard against which each lot is measured. The AOL is typically expressed as the

"maximum fraction nonconforming for the supplier's process that the consumer would

consider to be acceptable as a process average for the purposes of acceptance

sampling" [Ref. 4:p. 170]. When acceptance sampling leads to the acceptance of a

lot, the inference is made that the lot quality level is equal to, or lower than the

AQL.

Verification of the producer's quality program through the results of the

Markov model can also directly employ the AQL. When the upper confidence limit

on the lot proportion nonconforming does not exceed the AQL, we should have

considerable confidence that lots randomly selected from this process will be

acceptable without acceptance sampling. In particular, if

P + 1.645 p'(1-p') AOL (9)
N

we will have at least 95 percent confidence in the quality of an individual lot.
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The manufacturing process we have examined in structuring this approach has

been a simple one. In the next section, we will consider an expanded manufacturing

process.

F. APPLICATIONS TO EXPANDED MANUFACTURING PROCESSES

The methods for estimating quality, which were provided in the previous

section, can be extended te larger manufacturing processes. Many manufacturing

processes have more than one production section and associated process quality

control sections. One such process may consist of a production section, monitored

by a p-chart, followed by another production section and its associated p-chart.

We will consider two variations of this expanded process and show how output

quality estimates may be obtained. In the first case, we set the process shift

probability of the follow-on production process equal to zero. In other words, the

second p-chart serves as a back-up to the first. In the second case, we examine the

situation when the follow-on process shift is greater than zero. The diagram for this

expanded manufacturing process is shown in Figure 5.

For each of these variations, the initial production process and its quality

control section will perform as was previously described. A double prime (")

notation will identify variables belonging to the second production and quality

sections.

The calculations involved in the examination of these expanded processes can

be more simply approached if we apportion the fraction nonconforming levels
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Figure 5 An expanded manufacturing process consisting of two Process

Production Sections, each having a Process Quality Control Section.

* produced while in state S directly to the states I and 0. This means that the

approximate proportion of time the first manufacturing process is operating at level

p, would be

Pr(p1 )' POOp1  + O(Pr(p*)) ,(10)

and an approximate value for proportion of time spent operating at level P2 is

Pr(P2)' P0~2) + 0(1Q) (Pr(P))()
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1. Case 1

The manufacturing process we will consider consists of two parts. The first

part is a production section (producing one of two process averages, p, and p,), and

a quality control section (p-chart) similar to that which we have introduced. The

second part is similar to the first except the process shift probability 8" is taken to

be zero. This corresponds to having two successive control charts ensuring item

quality.

To find the fraction nonconforming produced by this manufacturing process

we will use a familiar approach. We will determine the probabilities that the

manufacturing process is yielding items at a process fraction nonconforming equal to

p, (this will be represented by Pr(p,)"), and at a process fraction nonconforming

equal to P2, (represented by Pr(p2)"); multiply by the process fraction of

nonconforming items (p, and p, respectively); and sum for the resulting expected

value.

The probability Pr(p,)" that the manufacturing process is yielding items

with fraction nonconforming of p, is equal to

POO" = Pr(P)' + (Pr(p 2 )') (1 -Pa) (12)

This represents that proportion of time the first production section is operating at p1

plus that proportion of time the second p-chart catches an error made by the first.

Th,= probability that the process is operating at p,, and the complimentary probability

l.Pr(p,)", also represented by
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Pr(P2)= Pr(P2 )' - (Pr(P2 )') (l0 p ') , (13)

are substituted into

P" = Pr(P)" P + Pr(P2)" P2  (14)

The fraction of nonconforming items exiting the manufacturing process

after the second section control chart is then specified as

P" = [ Pr(Pl)' +(Pr 2 )') (1-P') ] P + [(Pr(P2 )') Pa] P2 (15)

2. Case 2

In Case 2, we will examine a manufacturing process similar to the one

presented in Case 1, however the second production section's process shift probability

6", will be greater than zero. This means that an in-control process may shift to out

of control after the first quality control section.

In this second case, to specify the probability Pr(p,)" that the

manufacturing process is yielding items with a fraction nonconforming equal to p,,

and the probability Pr(p2)" for that of a process fraction nonconforming equal to p2,

a close examination of the second production section and its associated control chart

is needed. The events that can occur with respect to the process average fraction

nonconforming after the first process production section and its quality control

section (the first p-chart), are:
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1. The second production section can be entered at a level of nonconforming
items equal to p,, and continue to yield p, for the remainder of the
sampling interval,

2. The second production section can be entered at a level of nonconforming
items equal to p,, shift to p,, and be correctly identified by the second p-
chart at the end of the sampling interval,

3. The second production section can be entered at a level of nonconforming
equal to p,, shift to p, and not be correctly identified by the second p-
chart at the end of the sampling interval,

4. The second production section can be entered at a level of nonconforming
equal to p,, and be correctly identified by the second p-chart at the end
of the sampling interval,

5. The second production section can be entered at a level of nonconforming
equal to p,, and not be correctly identified by the second p-chart at the
end of the sampling interval.

These events occur with probabilities of

Event 1 (Pr(p,),)(1-6"),

Event 2 (Pr(p,) ') 6" (1-P."),

Event 3 (Pr(p,),) 6" Pa".

Event 4 (Pr(p2)') (1-Pa"), and

Event 5 (Pr(P2) ') Pa""

The fraction of nonconforming items yielded by this process is found as

before. The events that conclude the manufacturing process is operating at a process

fraction of nonconforming items yielded equal to p, are numbered 1, 2, and 4.

Therefore, the probability Pr(p,)", that the manufacturing process is yielding items

with a fraction nonconforming equal to p, is

Pr(P = [(Pr(p)')(1 -6")+(Pr(p1 )"(1 -P ).(Pr(p2 )')(1-tg')]. (16)
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The remaining events, 3 and 5,

P[ (Pr(p 1)') 8" PF, + (Pr(p 2)') P'] , (17)

represent the probability Pr(p)" that the manufacturing process is yielding items at

a process fraction of nonconforming equal to P, Substituting the probabilities of

occurrence Pr(p,)" and Pr(p2)" into Equation (14), we find,

p" = [(Pr(p)') (1 -5") + (Pr(p1 )') 6"(1 -P') + (Pr(p 2)') (1- /)I p,

+ [(Pr(p1)') 8" P.$ + (Pr(p 2)) P.] P2 , (18)

is the fraction of nonconforming items exiting the manufacturing process after the

second section control chart.

G. EMPLOYMENT OF THE MARKOV MODEL

The employment of this approach requires that certain parameters concerning

the manufacturing process be known. In particular, we need to know the values fO:

p,, p*, and p. (the levels of process average fraction nonconforming); Pa and P.* (the

probabilities that the control chart makes a type II error); and 6 (the probability that

the production process shifts from p, to p,). These parameter values may be

calculated from the numerical evidence provided by a manufacturer's existing quality

program. Specification of the control chart will provide us with the value for P.,

while manufacturing process data will support calculation of the remaining values.

The levels of process average fraction nonconforming, p, and p, could be determined
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from sampling data. However, the value for the shift between the two levels 6, may

be the most difficult to obtain.

A reasonable approximation for 6 could be calculated by assuming that the time

until the production process shift occurs is exponentially distributed. The shift

probability 6 would be represented by

_ - le - (19)

The exponential shift rate parameter, the arrival rate of a failure of the production

process X , could be estimated using maximum likelihood techniques.

In its simplest form, the information required to calculate X need only be a

record of the run lengths of in-control determinations as made by the quality control

section's p-chart. The number of sampling intervals between out-of-control

determinations could be recorded and expressed as r, (i = 1, 2,..., n). The value of

r, would be the length of the first run of in-control p-chart determinations. Likewise,

the value of r2 would be the length of the second run of in-control p-chart

determinations, and so forth. If these values are available, the maximum likelihood

function for X,

n

LR ( ) = TI (A e -r) = Xn e-1, r,
/=1
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can be solved by first taking the natural logarithm of both sides,

In LR () = n In X X Z r;

then taking the derivative with respect to X.,

din L. (1) n n I rE

setting it equal to zero, and solving for X

n

The maximum likelihood estimate of . completes the information we needed to

calculate values for 4, p*. and P,*. [Ref. 8:p. 365]

The approach presented in this cbhpt2r cxamined the impact of an existing

quality control program (a p-chart) on the production section of a simple

manufacturing process. In the next chapter, a numerical example will be offered

reviewing the calculations necessary for model employment.
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IV. A SOLVED NUMERICAL EXAMPLE

In this chapter we will examine, with more detail, the impact of a quality control

program on a simple manufacturing process through a solved numerical example.

We will assess the manufacturing process' quality control program by calculating the

95 percent upper confidence limit on the lot proportion nonconforming and

comparing it to the AQL. Finally. the sensitivity of the quality control section is

addressed through alterations of the sampling interval and control chart parameters.

A. AN EXAMPLE MANUFACTURING PROCESS

Our example manufacturing process will be similar to the one introduced in

Chapter III. It will consist of a continuously-operating process production section

capable of producing items at either fraction nonconforming level p or P2. and a

process quality control section. consisting of a single p-chart, capable of detecting a

shift to the higher fraction nonconforming level P2 at least 90 percent of the time (1-

Pa = 0.90). The shift from p1 or p2 will be assumed to occur in an exponential

manner. The production rate of manufacturing process will be 100,000 items per

hour and for the purposes of quality control, samples will be taken every T = 1 hour.

The ;n control process average fraction nonconforming p,, determined from

production data, was found to be 0.07. In other words, on average, 7 percent or 7

items of every 100 produced are expected to be nonconforming. When the
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production process fails, the process average fraction nonconforming produced p, is

equal to 0.12.

To successfully employ the three-state Markov approach introduced in Chapter

III, we need to know the values for pl, p', p2, P., P.*, and S. Typically, as is the case

for our example, the values for pl, P2, are known from sampling data and the value

of P. can be derived from the p-chart OC curve. The value for P. is set at .10. The

remaining values p, P.*, and 5 must be calculated from information derived from the

manufacturing process itself.

First, we will approximate a value for the manufacturing process shift

probability 6. Equation (20) represents this probability,

S-_ 1-e -

provided that an estimate of the exponential shift rate parameter . can be

calculated. The maximum likelihood method saggested in Chapter III will be used to

calculate X.

Secondly, the values for p*, the expected fraction nonconforming produced when

the p-ocess is in state S (Equation (2)),

P" = OP1  + (1-) P2
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and P8
° will be calcuLted. We can recall that P, is the associated type II error

determined from the p-chart OC curve as a function of p°.

1. Calculation of the Manufacturing Process Shift Probability £

Suppose the number of sampling intervals between out-of-control

determinations, as made by the p-chart. has been recorded as suggested in Chapter

III. The data might look like as is given in Table 1.

Table 1. EXAMPLE IN-CONTROL RUN LENGTH DATA
Run # Run Length of in-control

Determinations

1 14

2 35

3 18

4 9

5 27

501 17

Since the run length of in-control determinations, as made by the p-chart,

is to be used to calculate the exponential shift rate parameter, it is useful to discuss

possible p-chart errors. The type II error probability, the probability that the p-chart

does not identify a process shift given that one has occurred over the sampling

interval of interest, is equal to 0.10. If such an error had been made, it would, in

most cases, be identified during the next sample test, because the probability that the

p-chart identifies a process shift on at least the second sample, given that its type II

error is equal to 0.10, is 1_(0.10)2 or 0.99. A misidentification of this type would only
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amount to a one sampling interval difference, on the high side, between out-of-control

determinations. The probability of a type I error, a false alarm initiated by the p-

chart determining that production is at p2 given that it is actually at p,, is considerably

small. Therefore, a maximum likelihood estimate is believed to be a satisfactory

estimate of I because the errors associated with the p-chart do not seriously effect

thc required data.

The maximum likelihood function for the 50 observations (runs), LR (X),

is given by

49 50

LR (X) = ]-[ (X e") 17 (X e")
i=1 i=50

and can be minimized, yielding

49
50

1=1

For the purposes of our example, let us assign . = 0.04 shifts per

sampling interval T. Therefore, the shift probability 6 is represented by

8 -0.0 4

or 6 0.0392.

2. Calculation of p- and P.

To calculate p*, the expected fraction of nonconforming items produced

by the manufacturing process when in the states identified as S, we need to first

calculate the expected value of the proportion of time spent in state S attributable

to the fraction nonconforming level p,. Using the maximum likelihood estimate

for ), and Equation (1).
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-1 - (l+i.)e -

Q=

the value for Q is calculated to be 0.4967. Substituting this value into Equation (2)

p* = Qp 1 + (1-Q) p 2

the value of p* equal to 0.0952 is calculated.
In order to calculate p*s associated probabilities P,*, and 1-P ,, the OC

curve for the p-chart must be defined. Duncan [Ref. 4:p. 448] offers a method for

construction of OC curves for p-charts where the value of P. is expressed as

LCL- P2  UCL- P2

a P2 G P2

where z is a standard normal deviate. Since we are primarily concerned with

identifying a shift to a higher fraction of nonconformities, we v,ill concentrate on the

upper control limit's discriminatory ability. The three-sigma upper control limit

(UCL) is

UCL = P + 3 p1(1 -Pl)
n

and the expression for aP2 is

P2(l P2)
P2n

Using the above equations, we define a relationship for the ordinate of the normal

probability distribution
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( P1  3 p (1-P1) P2 (
z = n(20)

P 2 (1 -P 2 )

n

where n is the p-chart sample size.

For our example manufacturing process described above, we desire the p-

chart to identify a sample fraction nonconforming of p, at least 90 percent of the time

or 1-Pa = 0.90. Therefore, the value of the ordinate of the normal probability

distribution must be less than -1.28, the value for the tenth normal percentile. This

ordinate corresponds to the probability of a type II error or Pa = 0.10. Given that

the values of p, and p, are 0.07 and 0.12 respectively, a sample size of 559 items

yields an ordinate value of -1.282 or the tenth percentile. The p-chart OC curve

would therefore have the ability to identify a fraction nonconforming equal to P2 at

least 90 percent of the time, if a sample size of 559 items is inspected each sampling

interval.

Using Equation (20), the relationship for the ordinate of the normal

probability z, we can calculate the value for P*. Substituting p* for p2 and

maintaining the sample size n = 559, the calculated value for z is found to be 0.5779

and its associated probability Pa. is equal to 0.7190.

To summarize, our example manufacturing process produces 100,000 items

an hour. A sample size of n = 559 items will be examined every sampling interval,

= 1 hour. The process shift, from a process average fraction nonconforming of p,

= 0.07 to a process average fraction nonconforming of p, = 0.12, is exponentially

distributed with a shift rate parameter of . = 0.04 shifts per Tr. If a shift occurs, it

will be determined 1-P. = 90 percent of the time, therefore P. = 0.10. Additionally,
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the fraction of nonconforming items produced when in state S is p* = 0.0952, and the

probability that the p-chart misidentifies this fraction nonconforming is P.* = 0.7190.

B. AN EVALUATION OF THE QUALITY CONTROL PROGRAM

Combining the calculated values 6, and P.* with the known value P, and

substituting into Equations (3), (4), and (5) for the stationary probabilities,

(1 -Pa)(1 -8)

1 -P.+ 8 P,*

5 (1 - Pe)
1 - Pa+ aPa.

and

8 Pa"
7%0 =

1 - Pa+ 6Pa*

we calculate the stationary probabilities to be, 7r, = 0.9316, 7r, = 0.0380, and

7ro = 0.0304. Following the notation introduced in Chapter III, the stationary

probability 7r, is represented by Pr(pl) = 0.9316, the stationary probability r, is

represented by Pr(p*) = 0.0380, and the remaining stationary probability v

represented as Pr(p2 ) = 0.0304.

Using these stationary probabilities and their respective fractions nonconforming

produced while in these states, we substitute into Equation (7),
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p' = Pr(p,) p1 + Pr(p) p* + Pr(p2) P2 I

-2 fiilJ thic prc.s _vragc .. c10n liccol'.firming p, to be equal to 0.0723.

If items chosen at random from the manufacturing process are formed into lots

of size N = 1000, then a one-sided 95 percent upper confidence limit on the fraction

of nonconforming items p,.,, determined from Equation (8), is equal to 0.0860. If this

upper confidence limit is no greater than the Acceptable Quality Limit, then we will

have at least 95 percent confidence in the quality of these lots.

C. FURTHER ASSESSMENT OF QUALITY PROGRAMS

A great deal of insight can be gained if we situationally apply the results of the

three-state Markov model, but first we should use some basic common sense. For

instance, we can set an upper bound or best case 95 percent upper confidence limit

on the fraction of nonconforming items in a lot. If we assume that the production

process never shifts to process average p. = 0.12 but continues to operate at process

average p, = 0.07, then the 95 percent upper confidence limit on the fraction of items

nonconforming in a lot of 1000 is found to be 0.0833. We will be more than 95

percent confident that a lot of size N = 1000 contains no more than 83 items that are

nonconforming. If this fraction of nonconformities in a lot, when compared to the

designated Acceptable Quality Level, is not acceptable, then the manufacturing

process must be rejected because its best effort does not meet the specifications.

It should be noted that when acceptance sampling is used, the Acceptable

Quality Level is not intended to be a producer's target value for the production

process. However, when considering alternative acceptance criteria, the AQL could

serve the producer as a target value for the 95 percent upper confidence limit for the

manufacturing process average fraction nonconforming.

Once we have assessed the manufacturing process' capability to meet the

Acceptable Quality Level, alteration of the process quality control parameters, or

adjusting the sensitivity of the process quality control section, might prove interesting.
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These adjustments would be made to the sampling interval r or to the ability of the

control chart to identify a process shift (P.).

1. nampling Interval Sensitivity

Suppose the upper confidence limit of 86 nonconforming items per 1000,

obtained in the example, is satisfactory. In fact, suppose we could tolerate as many

as 89 nonconforming items as our upper bound. (This number would be calculated

using the Acceptable Quality Level (AQL) for the item.) If the sampling interval

during process control is doubled to two hours, the corresponding shift rate would

be , = 0.08 per T. Holding the values of p1 , P2, and P. equal to those presented

in the example, the new 95 percent upper confidence limit for p, is calculated to

be 0.0884. This confidence bound has an associated number of nonconforming items

of 88. The difference is slight, only three items, however 88 nonconforming items is

still acceptable, and the savings gained from halving the number of required samples

to meet the AQL could be passed on to the consumer.

Following similar logic, if a two-fold increase in sampling interval caused

little change to the output, what would that of a three-fold increase exhibit? If we

triple the sampling interval during process control, the corresponding shift rate would

be X = 0.12 per T'. The new one-sided 95 percent confidence limit for p' is

calculated to be 0.0905. This confidence limit has an associated number of

nonconforming items of 90 which is be above that required. So, whereas a dcibling

of the sampling interval proved helpful, too much of an adjustment became

detrimental.

2. Control Chart Sensitivity

Suppose that upon examination of the manufacturing process, numerical

evidence reveals the 95 percent upper bound on pI to be 0.0860, as was established

earlier, and we are given information based on the Acceptable Quality Level that the
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95 percent upper confidence limit is not to exceed 0.0880. We know that the sample

size is equal to 559 items, and that, given this sample size, the probability that the p-

LIht w1i; .tCiuh. he process is operaung at level p, when in fact it is operating at

P2 is equal to 10 percent. Rather than increase the sampling interval, as was done

previously, we will look at decreasing the p-charts' ability to identify a process shift

on the first sample taken after the shift has occurred or increasing the probability of

making a type II error.

If the sample size is decreased to that of 235 items per sampling interval

then the corresponding value for P. is equal to approximately 0.50. This adjustment

decreases the sample size by 324 items and still meets the AOL with a 95 percent

confidence limit on p, equal to 0.0878. In this case, the savings gained from the

decreased sample size may be passed on to the consumer.

3. Nonconformities Occurring After Quality Control

Suppose the initial production process remains the same, but a follow-on

process, for instance, packaging the manufactured items must take place. If a

probabilistic estimate concerning the damage to an item during a packaging process

was known, then a revised estimate for the number nonconforming can be easily

made. For example, if we know that a good item is damaged q = 0.01 percent of the

time when packaged, a revised estimate of the fraction on nonconforming items is

E[ fraction of nonconforming items] = (1 - p') q + pl

Using the first numerical example p, value of 0.0725, the revised estimate on the

fraction nonconforming is found to be 0.0818 with a 95 percent upper confidence

limit of 0.0961. This estimate means that we would be more than 95 percent certain

that a lot of 1000 items set for delivery would contain at least 903 items conforming.

The same approach could handle many nonconformities that occur after

the process quality control section and could even be extended to encompass

transportation and storage if reliable estimates are available regarding the

probabilistic results of these transactions.
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In this chapter we calculated the fraction of nonconforming items produced

by a manufacturing process using the three-state Markov model introduced earlier.

_=i ___3tc C uuL,'a p , hc elcvaitL inputs, the values of p,, p ,

Pa, P. , and . , were obtainable from the numerical evidence provided by the

manufacturer's use of Stati.tial Process Control. Also shown was the model's ability

to furnish suggestions as to the sampling interval length and the discriminatory power

of the control chart, based on the Acceptable Quality Level.
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V. SUMMARY AND SUGGESTIONS FOR FURTHER STUDY

In this thesis we examined the quality control practices typical of some

manufacturing processes in an effort to gain information concerning product quality

for the purpose of establishing an alternative to acceptance sampling plans. A three-

state Markov model was used to represent a simple manufacturing process and a 95

percent upper confidence limit for the process average fraction nonconforming was

calculated. The calculation of this confidence limit was contingent upon certain

statistical evidence obtained from the manufacturing process itself.

A. AN ASSESSMENT OF STATISTICAL PROCESS CONTROL, VS. SAMPLING

Since this approac,- and otheis, based in Statistical Process Control, may be

used as possible alternatives to acceptance sampling plans, they should, at least,

maintain the characteristics enjoyed under acceptance sampling. While acceptance

sampling does not attempt to control quality, it does provide

" Long run protection for the consumer,

" A level of protection for the consumer against accepting bad lots,

" Minimal sampling, inspection, and administrative burden as compared to 100
percent inspection, and

" Limited information concerning the quality of the product in the form of a
sample mean, range, number or percentage nonconforming.

The additional advantages enjoyed under Statistical Process Control are that

" A certain confidence can be associated with the product quality information,

" The manufacturer is encouraged to keep his process in control,

" The manufacturer is protected against having lots rejected when his "-:roduction
process in control, and

" Comparisons between manufacturers based upon process capability is possible.
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When alternative acceptance criteria is sought, close examination of the

manufacturer's quality program is essential. Specifically, when a manufacturer

impkicmn.is Sta stlcal Process Control, the manufacturing process itself becomes the

source of the data needed implement this alternative. Provided that this data is

available, the calculated estimate of the fraction nonconforming items and its

associated confidence limit could afford decision makers a pre-delivery glance at the

expected lot quality. If the 95 percent confidence limit conforms with that prescribed

by the Acceptable Quality Level for lots, the decision maker may consider qualifying

the manufacturing process' as a candidate for alternative acceptance criteria.

B. RECOMMENDATIONS AND SUGGESTIONS FOR FURTHER RESEARCH

While this thesis examined only one type of manufacturing process, we believe

that manufactures who have quality control programs which use a well-structured and

implemented statistical methodology could be targeted for alternative acceptance

criteria. We recommend that the Department of Defense consider this Markov

approach and other similar approaches founded in Statistical Process Control.

Although this particular approach proved worthwhile, it is not all encompassing,

and further research into the examination of quality conrrol programs for the purpose

of developing alternative acceptance criteria is needed. While the manufacturing

process examined in this thesis, one operating at only two differing process levels,

certainly has its applications, a process which operated at more than two

nonconforming levels, or one in which the process shift is other than exponential,

could be examined.

If we view the consumer to be a manufacturing process further down a

production line, then the notion of two or more production processes, each producing

component parts for a larger product, comes to mind. Examination of alternative

acceptance criteria for a process which manufactures an item from a network of input

processes would prove useful.
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It is sincerely hoped that the approach presented in this thesis will be beneficial

to those members of the Department of Defense responsible for ensuring the quality

of acquired items.
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APPENDIX A

To be determined is Q. the expected value of the proportion of time spent in

state S attributable to the fraction nonconforming level of pt given that a shift, from

p1 to P2, occurs in an interval of length (0, r],

El shifttime [ shiftoccurs (0, ]

This expected value can be represented as

T

f x f(x)dx
Q0

P[ shiftoccurs (0, T]

Assuming that a shift from p, to P2 is exponentially distributed with a shift rate

parameter of X. the relationship for Q is rewritten as

f x .e - x dx
Q = 0

"[ (1 - e - IT)

Evaluating the integral and simplifing we find

A +'
-- ____" __--_-_ _ -(___ ._ )e -__
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Recalling that the exponential shift rate parameter is expressed in units of shifts per

T, thus T = 1, and the expression for Q becomes

Q(1 -e - )
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